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ADDENDUM

On steady-state solutions of the coagulation equation
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Abstract. Earlier work on time-independent solutions of the coagulation equation is
generalized to yield explicit solutions for any kernel of the formP(u, v) = T (u)T (v)Q(u, v)

whereQ is a homogeneous function ofu andv.

The standard Smoluchowski coagulation equation is∫ v/2

0
P(u, v − u)n(u)n(v − u) du − n(v)

∫ ∞

0
P(u, v)n(u) du = ∂n/∂t (1)

wheren(v) is the number density of particles with volumev andP(u, v) is the coagulation
kernel. The first attempt at finding solutions of this equation which are independent of time
(so that the right-hand side is zero) was made in [1] for the case ofP taking the form

P(u, v) = T (u)T (v)

(u + v)3
(2)

when it is readily shown that equation (1) has the solution

n(v) = constant/T (v) (3)

for an arbitrary functionT (v). The original interpretation of this solution was that it
corresponded to the equilibrium solution for an isolated system of coagulating particles.
However, it was pointed out in [2] that such an interpretation was not possible since for an
isolated system the total number of particles must be continually decreasing, thus precluding
the existence of a time-independent solution. The correct interpretation was essentially given
in [3] where (1) is understood to describe an ‘open’ system of coagulating particles connected
to a reservoir of particles of zero volume which are fed into the coagulating system at a
constant rate. These source particles then coagulate so that their material continually moves
into particles of greater volume and the possibility then exists of setting up a steady-state
situation described by (1) with the right-hand side zero. Essentially, the continual passage
of material into particles of greater volume due to coagulation is balanced by the continual
influx of material resulting from coagulation of the zero-volume source particles.

The purpose of the present communication is to investigate the existence of solutions
to the above steady-state coagulation equation for a much wider class of kernels than those
given by (2). We consider

P(u, v) = T (u)T (v)Q(u, v) (4)
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whereQ(u, v) is a homogeneous function ofu andv, satisfying

Q(λu, λv) = λαQ(u, v) (5)

for arbitrary constantλ and specified value ofα (equation (2) is clearly a special case of
this with α = −3). We then look for a solution of (1) (with right-hand side zero) of the
form

n(v) = Bvγ /T (v) (6)

whereB andγ are undetermined constants; we note that forT (v) = constant, equation (6)
corresponds to the standard Junge distribution [4]. Making use of (5) we then readily find
the solution (6) satisfies the steady-state equation (1) for arbitrary value ofB if γ can be
found to satisfy the equation∫ ∞

0
wγ Q(w, 1) dw −

∫ 1/2

0
wγ (1 − w)γ Q(w, 1 − w) dw = 0 . (7)

We now split the integration interval [0, ∞] of the first integral in (7) into two sub-intervals,
[0, 1] and [1, ∞], and in the integral over the second sub-interval substitutez = 1/w. In
the second integral in (7) we first useQ(w, 1 − w) = (1 − w)αQ(w/1 − w, 1) (sinceQ is
a homogeneous function) and then substitutez = w/(1−w). As a result, equation (7) now
takes the form∫ 1

0
wγ [1 + w−(α+2γ+2) − (1 + w)−(α+2γ+2)]Q(w, 1) dw = 0 (8)

which will hold for arbitraryQ if −(α + 2γ + 2) = 1 corresponding to

γ = − 1
2(α + 3) . (9)

It follows, therefore, that with this value ofγ the solution of the steady-state coagulation
equation is given by (6) for an arbitrary value ofB. We note that the result obtained in [1]
corresponds to a particular case of a homogeneous kernel withα = −3.

Finally we list four cases of known kernels [5] (all withT (v) = 1) and the corresponding
values ofγ .

(i) Coagulation due to Brownian motion with particle size significantly greater than the
gas molecular mean free path. HereP(u, v) = constant× (u1/3 + v1/3)(u−1/3 + v−1/3)

leading toα = 0 andγ = − 3
2.

(ii) Coagulation due to Brownian motion with particle size significantly less than the
gas molecular mean free path. HereP(u, v) = constant× (u1/3 + v1/3)2(u−1 + v−1)1/2

leading toα = 1
6 andγ = − 19

12.
(iii) Coagulation due to laminar shear gas flow. HereP(u, v) = constant×(u1/3+v1/3)3

leading toα = 1 andγ = −2.
(iv) Coagulation due to the variation in terminal velocity of different size particles falling

under gravity. HereP(u, v) = constant× (u1/3 + v1/3)3|u1/3 − v1/3| leading toα = 4
3 and

γ = − 13
6 .
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